%PDF-1.3
1 0 obj
<< /Type /Catalog
/Outlines 2 0 R
/Pages 3 0 R >>
endobj
2 0 obj
<< /Type /Outlines /Count 0 >>
endobj
3 0 obj
<< /Type /Pages
/Kids [6 0 R
9 0 R
11 0 R
13 0 R
15 0 R
17 0 R
19 0 R
21 0 R
23 0 R
25 0 R
27 0 R
29 0 R
31 0 R
33 0 R
35 0 R
37 0 R
39 0 R
41 0 R
43 0 R
45 0 R
47 0 R
49 0 R
51 0 R
53 0 R
55 0 R
57 0 R
59 0 R
61 0 R
63 0 R
65 0 R
67 0 R
69 0 R
71 0 R
73 0 R
75 0 R
77 0 R
79 0 R
81 0 R
83 0 R
85 0 R
87 0 R
]
/Count 41
/Resources <<
/ProcSet 4 0 R
/Font <<
/F1 8 0 R
>>
>>
/MediaBox [0.000 0.000 419.530 595.280]
>>
endobj
4 0 obj
[/PDF /Text ]
endobj
5 0 obj
<<
/Producer (pdf-parser Version: 7.1.0)
/CreationDate (D:20220929120209+00'00')
/ModDate (D:20220929120209+00'00')
/Title (Acces PDF Matrix Algebra Useful For Statistics Wiley Series In Probability And Statistics \(PDF\) - maykool.com)
/Subject (maykool.com)
/Author (Greenery Press)
/Keywords (Bookmark File PDF Acces PDF Matrix Algebra Useful For Statistics Wiley Series In Probability And Statistics \(PDF\) - maykool.com)
>>
endobj
6 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 7 0 R
>>
endobj
7 0 obj
<<
/Length 2169 >>
stream
0.000 0.000 0.000 rg
BT 34.016 514.330 Td /F1 28.5 Tf [(Matrix Algebra Useful For )] TJ ET
BT 34.016 479.532 Td /F1 28.5 Tf [(Statistics Wiley Series In )] TJ ET
BT 34.016 444.733 Td /F1 28.5 Tf [(Probability And Statistics)] TJ ET
BT 34.016 390.509 Td /F1 14.2 Tf [(If you ally obsession such a referred )] TJ ET
BT 266.077 390.509 Td /F1 14.2 Tf [(Matrix Algebra )] TJ ET
BT 34.016 373.110 Td /F1 14.2 Tf [(Useful For Statistics Wiley Series In Probability And )] TJ ET
BT 34.016 355.711 Td /F1 14.2 Tf [(Statistics)] TJ ET
BT 91.030 355.711 Td /F1 14.2 Tf [( ebook that will find the money for you worth, )] TJ ET
BT 34.016 338.312 Td /F1 14.2 Tf [(get the entirely best seller from us currently from )] TJ ET
BT 34.016 320.912 Td /F1 14.2 Tf [(several preferred authors. If you want to hilarious )] TJ ET
BT 34.016 303.513 Td /F1 14.2 Tf [(books, lots of novels, tale, jokes, and more fictions )] TJ ET
BT 34.016 286.114 Td /F1 14.2 Tf [(collections are then launched, from best seller to one )] TJ ET
BT 34.016 268.715 Td /F1 14.2 Tf [(of the most current released. )] TJ ET
BT 34.016 234.215 Td /F1 14.2 Tf [(You may not be perplexed to enjoy all ebook )] TJ ET
BT 34.016 216.816 Td /F1 14.2 Tf [(collections Matrix Algebra Useful For Statistics Wiley )] TJ ET
BT 34.016 199.417 Td /F1 14.2 Tf [(Series In Probability And Statistics that we will )] TJ ET
BT 34.016 182.018 Td /F1 14.2 Tf [(enormously offer. It is not almost the costs. Its about )] TJ ET
BT 34.016 164.618 Td /F1 14.2 Tf [(what you infatuation currently. This Matrix Algebra )] TJ ET
BT 34.016 147.219 Td /F1 14.2 Tf [(Useful For Statistics Wiley Series In Probability And )] TJ ET
BT 34.016 129.820 Td /F1 14.2 Tf [(Statistics , as one of the most effective sellers here will )] TJ ET
BT 34.016 112.421 Td /F1 14.2 Tf [(definitely be among the best options to review.)] TJ ET
BT 34.016 49.421 Td /F1 14.2 Tf [(Matrix Differential Calculus with Applications in )] TJ ET
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
34.016 47.070 m 332.553 47.070 l S
BT 34.016 32.022 Td /F1 14.2 Tf [(Statistics and Econometrics)] TJ ET
0.285 w 0 J [ ] 0 d
34.016 29.671 m 209.034 29.671 l S
endstream
endobj
8 0 obj
<< /Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Helvetica
/Encoding /WinAnsiEncoding
>>
endobj
9 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 10 0 R
>>
endobj
10 0 obj
<<
/Length 2937 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(Jan R. Magnus 2019-03-)] TJ ET
BT 190.837 547.345 Td /F1 14.2 Tf [(15 A brand new, fully updated )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(edition of a popular classic on matrix differential )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(calculus with applications in statistics and )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(econometrics This exhaustive, self-contained book on )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(matrix theory and matrix differential calculus provides )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(a treatment of matrix calculus based on differentials )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(and shows how easy it is to use this theory once you )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(have mastered the technique. Jan Magnus, who, along )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(with the late Heinz Neudecker, pioneered the theory, )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(develops it further in this new edition and provides )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(many examples along the way to support it. Matrix )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(calculus has become an essential tool for quantitative )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(methods in a large number of applications, ranging )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(from social and behavioral sciences to econometrics. It )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(is still relevant and used today in a wide range of )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(subjects such as the biosciences and psychology. )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(Matrix Differential Calculus with Applications in )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(Statistics and Econometrics, Third Edition contains all )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(of the essentials of multivariable calculus with an )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(emphasis on the use of differentials. It starts by )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(presenting a concise, yet thorough overview of matrix )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(algebra, then goes on to develop the theory of )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(differentials. The rest of the text combines the theory )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(and application of matrix differential calculus, providing )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(the practitioner and researcher with both a quick )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(review and a detailed reference. Fulfills the need for an )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(updated and unified treatment of matrix differential )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(calculus Contains many new examples and exercises )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(based on questions asked of the author over the years )] TJ ET
endstream
endobj
11 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 12 0 R
>>
endobj
12 0 obj
<<
/Length 2990 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(Covers new developments in field and features new )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(applications Written by a leading expert and pioneer of )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(the theory Part of the Wiley Series in Probability and )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(Statistics Matrix Differential Calculus With Applications )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(in Statistics and Econometrics Third Edition is an ideal )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(text for graduate students and academics studying the )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(subject, as well as for postgraduates and specialists )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(working in biosciences and psychology.)] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(Matrix differential calculus with applications in statistics )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(and econometrics)] TJ ET
BT 146.477 390.752 Td /F1 14.2 Tf [( 2007 )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(Matrix Algebra Useful for Statistics)] TJ ET
0.285 w 0 J [ ] 0 d
34.016 371.001 m 251.784 371.001 l S
BT 251.784 373.352 Td /F1 14.2 Tf [( Shayle R. Searle )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(2017-04-10 A thoroughly updated guide to matrix )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(algebra and it uses in statistical analysis and features )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(SAS®, MATLAB®, and R throughout This Second )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(Edition addresses matrix algebra that is useful in the )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(statistical analysis of data as well as within statistics as )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(a whole. The material is presented in an explanatory )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(style rather than a formal theorem-proof format and is )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(self-contained. Featuring numerous applied )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(illustrations, numerical examples, and exercises, the )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(book has been updated to include the use of SAS, )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(MATLAB, and R for the execution of matrix )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(computations. In addition, André I. Khuri, who has )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(extensive research and teaching experience in the )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(field, joins this new edition as co-author. The Second )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(Edition also: Contains new coverage on vector spaces )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(and linear transformations and discusses )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(computational aspects of matrices Covers the analysis )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(of balanced linear models using direct products of )] TJ ET
endstream
endobj
13 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 14 0 R
>>
endobj
14 0 obj
<<
/Length 2865 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(matrices Analyzes multiresponse linear models where )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(several responses can be of interest Includes )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(extensive use of SAS, MATLAB, and R throughout )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(Contains over 400 examples and exercises to )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(reinforce understanding along with select solutions )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(Includes plentiful new illustrations depicting the )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(importance of geometry as well as historical interludes )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(Matrix Algebra Useful for Statistics, Second Edition is )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(an ideal textbook for advanced undergraduate and first-)] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(year graduate level courses in statistics and other )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(related disciplines. The book is also appropriate as a )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(reference for independent readers who use statistics )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(and wish to improve their knowledge of matrix algebra. )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(THE LATE SHAYLE R. SEARLE, PHD, was professor )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(emeritus of biometry at Cornell University. He was the )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(author of Linear Models for Unbalanced Data and )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(Linear Models and co-author of Generalized, Linear, )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(and Mixed Models, Second Edition, Matrix Algebra for )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(Applied Economics, and Variance Components, all )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(published by Wiley. Dr. Searle received the Alexander )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(von Humboldt Senior Scientist Award, and he was an )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(honorary fellow of the Royal Society of New Zealand. )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(ANDRÉ I. KHURI, PHD, is Professor Emeritus of )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(Statistics at the University of Florida. He is the author )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(of Advanced Calculus with Applications in Statistics, )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(Second Edition and co-author of Statistical Tests for )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(Mixed Linear Models, all published by Wiley. Dr. Khuri )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(is a member of numerous academic associations, )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(among them the American Statistical Association and )] TJ ET
endstream
endobj
15 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 16 0 R
>>
endobj
16 0 obj
<<
/Length 2837 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(the Institute of Mathematical Statistics.)] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(Foundations of Linear and Generalized Linear Models)] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(Alan Agresti 2015-02-23 A valuable overview of the )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(most important ideas and results in statistical modeling )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(Written by a highly-experienced author, Foundations of )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(Linear and Generalized Linear Models is a clear and )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(comprehensive guide to the key concepts and results )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(of linearstatistical models. The book presents a broad, )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(in-depth overview of the most commonly )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(usedstatistical models by discussing the theory )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(underlying the models, R software applications,and )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(examples with crafted models to elucidate key ideas )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(and promote practical modelbuilding. The book begins )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(by illustrating the fundamentals of linear models, such )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(as how the model-fitting projects the data onto a model )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(vector subspace and how orthogonal decompositions )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(of the data yield information about the effects of )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(explanatory variables. Subsequently, the book covers )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(the most popular generalized linear models, which )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(include binomial and multinomial logistic regression for )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(categorical data, and Poisson and negative binomial )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(loglinear models for count data. Focusing on the )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(theoretical underpinnings of these models, )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(Foundations ofLinear and Generalized Linear Models )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(also features: An introduction to quasi-likelihood )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(methods that require weaker distributional )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(assumptions, such as generalized estimating equation )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(methods An overview of linear mixed models and )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(generalized linear mixed models with random effects )] TJ ET
endstream
endobj
17 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 18 0 R
>>
endobj
18 0 obj
<<
/Length 2902 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(for clustered correlated data, Bayesian modeling, and )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(extensions to handle problematic cases such as high )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(dimensional problems Numerous examples that use R )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(software for all text data analyses More than 400 )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(exercises for readers to practice and extend the )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(theory, methods, and data analysis A supplementary )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(website with datasets for the examples and exercises )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(An invaluable textbook for upper-undergraduate and )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(graduate-level students in statistics and biostatistics )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(courses, Foundations of Linear and Generalized )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(Linear Models is also an excellent reference for )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(practicing statisticians and biostatisticians, as well as )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(anyone who is interested in learning about the most )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(important statistical models for analyzing data.)] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(Matrix Algebra Useful for Statistics)] TJ ET
BT 251.784 303.755 Td /F1 14.2 Tf [( Shayle R. Searle )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(2017-03-31 A thoroughly updated guide to matrix )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(algebra and it uses in statistical analysis and features )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(SAS®, MATLAB®, and R throughout This Second )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(Edition addresses matrix algebra that is useful in the )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(statistical analysis of data as well as within statistics as )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(a whole. The material is presented in an explanatory )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(style rather than a formal theorem-proof format and is )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(self-contained. Featuring numerous applied )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(illustrations, numerical examples, and exercises, the )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(book has been updated to include the use of SAS, )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(MATLAB, and R for the execution of matrix )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(computations. In addition, André I. Khuri, who has )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(extensive research and teaching experience in the )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(field, joins this new edition as co-author. The Second )] TJ ET
endstream
endobj
19 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 20 0 R
>>
endobj
20 0 obj
<<
/Length 2856 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(Edition also: Contains new coverage on vector spaces )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(and linear transformations and discusses )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(computational aspects of matrices Covers the analysis )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(of balanced linear models using direct products of )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(matrices Analyzes multiresponse linear models where )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(several responses can be of interest Includes )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(extensive use of SAS, MATLAB, and R throughout )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(Contains over 400 examples and exercises to )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(reinforce understanding along with select solutions )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(Includes plentiful new illustrations depicting the )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(importance of geometry as well as historical interludes )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(Matrix Algebra Useful for Statistics, Second Edition is )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(an ideal textbook for advanced undergraduate and first-)] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(year graduate level courses in statistics and other )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(related disciplines. The book is also appropriate as a )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(reference for independent readers who use statistics )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(and wish to improve their knowledge of matrix algebra. )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(THE LATE SHAYLE R. SEARLE, PHD, was professor )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(emeritus of biometry at Cornell University. He was the )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(author of Linear Models for Unbalanced Data and )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(Linear Models and co-author of Generalized, Linear, )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(and Mixed Models, Second Edition, Matrix Algebra for )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(Applied Economics, and Variance Components, all )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(published by Wiley. Dr. Searle received the Alexander )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(von Humboldt Senior Scientist Award, and he was an )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(honorary fellow of the Royal Society of New Zealand. )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(ANDRÉ I. KHURI, PHD, is Professor Emeritus of )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(Statistics at the University of Florida. He is the author )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(of Advanced Calculus with Applications in Statistics, )] TJ ET
endstream
endobj
21 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 22 0 R
>>
endobj
22 0 obj
<<
/Length 2961 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(Second Edition and co-author of Statistical Tests for )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(Mixed Linear Models, all published by Wiley. Dr. Khuri )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(is a member of numerous academic associations, )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(among them the American Statistical Association and )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(the Institute of Mathematical Statistics.)] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(Linear Models)] TJ ET
0.285 w 0 J [ ] 0 d
34.016 457.997 m 123.506 457.997 l S
BT 123.506 460.349 Td /F1 14.2 Tf [( Brenton R. Clarke 2008-09-19 An )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(insightful approach to the analysis of variance in the )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(study of linear models Linear Models explores the )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(theory of linear models and the dynamic relationships )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(that these models have with Analysis of Variance )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(\(ANOVA\), experimental design, and random and )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(mixed-model effects. This one-of-a-kind book )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(emphasizes an approach that clearly explains the )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(distribution theory of linear models and experimental )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(design starting from basic mathematical concepts in )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(linear algebra. The author begins with a presentation )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(of the classic fixed-effects linear model and goes on to )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(illustrate eight common linear models, along with the )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(value of their use in statistics. From this foundation, )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(subsequent chapters introduce concepts pertaining to )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(the linear model, starting with vector space theory and )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(the theory of least-squares estimation. An outline of )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(the Helmert matrix is also presented, along with a )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(thorough explanation of how the ANOVA is created in )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(both typical two-way and higher layout designs, )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(ultimately revealing the distribution theory. Other )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(important topics covered include: Vector space theory )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(The theory of least squares estimation Gauss-Markov )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(theorem Kronecker products Diagnostic and robust )] TJ ET
endstream
endobj
23 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 24 0 R
>>
endobj
24 0 obj
<<
/Length 2910 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(methods for linear models Likelihood approaches to )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(estimation A discussion of Bayesian theory is also )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(included for purposes of comparison and contrast, and )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(numerous illustrative exercises assist the reader with )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(uncovering the nature of the models, using both )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(classic and new data sets. Requiring only a working )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(knowledge of basic probability and statistical inference, )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(Linear Models is a valuable book for courses on linear )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(models at the upper-undergraduate and graduate )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(levels. It is also an excellent reference for practitioners )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(who use linear models to conduct research in the fields )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(of econometrics, psychology, sociology, biology, and )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(agriculture.)] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(Linear Models)] TJ ET
BT 123.506 321.155 Td /F1 14.2 Tf [( Shayle R. Searle 2016-10-31 Provides )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(an easy-to-understand guide to statistical linear )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(models and its uses in data analysis This book defines )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(a broad spectrum of statistical linear models that is )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(useful in the analysis of data. Considerable rewriting )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(was done to make the book more reader friendly than )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(the first edition. Linear Models, Second Edition is )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(written in such a way as to be self-contained for a )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(person with a background in basic statistics, calculus )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(and linear algebra. The text includes numerous applied )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(illustrations, numerical examples, and exercises, now )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(augmented with computer outputs in SAS and R. Also )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(new to this edition is: • A greatly improved internal )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(design and format • A short introductory chapter to )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(ease understanding of the order in which topics are )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(taken up • Discussion of additional topics including )] TJ ET
endstream
endobj
25 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 26 0 R
>>
endobj
26 0 obj
<<
/Length 2835 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(multiple comparisons and shrinkage estimators • )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(Enhanced discussions of generalized inverses, the )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(MINQUE, Bayes and Maximum Likelihood estimators )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(for estimating variance components Furthermore, in )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(this edition, the second author adds many pedagogical )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(elements throughout the book. These include )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(numbered examples, end-of-example and end-of-proof )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(symbols, selected hints and solutions to exercises )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(available on the book’s website, and references to “big )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(data” in everyday life. Featuring a thorough update, )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(Linear Models, Second Edition includes: • A new )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(internal format, additional instructional pedagogy, )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(selected hints and solutions to exercises, and several )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(more real-life applications • Many examples using SAS )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(and R with timely data sets • Over 400 examples and )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(exercises throughout the book to reinforce )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(understanding Linear Models, Second Edition is a )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(textbook and a reference for upper-level )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(undergraduate and beginning graduate-level courses )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(on linear models, statisticians, engineers, and )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(scientists who use multiple regression or analysis of )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(variance in their work. The late SHAYLE R. SEARLE, )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(PhD, was Professor Emeritus of Biometry at Cornell )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(University. He was the author of the first edition of )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(Linear Models, Linear Models for Unbalanced Data, )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(and Generalized, Linear, and Mixed Models \(with )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(Charles E. McCulloch\), all from Wiley. The first edition )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(of Linear Models appears in the Wiley Classics Library. )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(MARVIN H. J. GRUBER, PhD, is Professor Emeritus )] TJ ET
endstream
endobj
27 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 28 0 R
>>
endobj
28 0 obj
<<
/Length 2813 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(at Rochester Institute of Technology, School of )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(Mathematical Sciences. Dr. Gruber has written a )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(number of papers and has given numerous )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(presentations at professional meetings during his )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(tenure as a professor at RIT. His fields of interest )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(include regression estimators and the improvement of )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(their efficiency using shrinkage estimators. He has )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(written and published two books on this topic. Another )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(of his books, Matrix Algebra for Linear Models, also )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(published by Wiley, provides good preparation for )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(studying Linear Models. He is a member of the )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(American Mathematical Society, the Institute of )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(Mathematical Statistics and the American Statistical )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(Association.)] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(Linear Algebra and Its Applications)] TJ ET
BT 254.207 303.755 Td /F1 14.2 Tf [( Peter D. Lax 2013-)] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(05-20 Praise for the First Edition ". . .recommended for )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(the teacher and researcher as well as forgraduate )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(students. In fact, [it] has a place on )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(everymathematician's bookshelf." -American )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(Mathematical Monthly Linear Algebra and Its )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(Applications, Second Edition presents linearalgebra as )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(the theory and practice of linear spaces and linear )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(mapswith a unique focus on the analytical aspects as )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(well as thenumerous applications of the subject. In )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(addition to thoroughcoverage of linear equations, )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(matrices, vector spaces, game theory,and numerical )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(analysis, the Second Edition featuresstudent-friendly )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(additions that enhance the book's )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(accessibility,including expanded topical coverage in )] TJ ET
endstream
endobj
29 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 30 0 R
>>
endobj
30 0 obj
<<
/Length 2733 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(the early chapters,additional exercises, and solutions )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(to selected problems. Beginning chapters are devoted )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(to the abstract structure of finitedimensional vector )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(spaces, and subsequent chapters addressconvexity )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(and the duality theorem as well as describe the basics )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(ofnormed linear spaces and linear maps between )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(normed spaces. Further updates and revisions have )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(been included to reflect themost up-to-date coverage )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(of the topic, including: The QR algorithm for finding the )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(eigenvalues of a self-adjointmatrix The Householder )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(algorithm for turning self-adjoint matricesinto )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(tridiagonal form The compactness of the unit ball as a )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(criterion of finitedimensionality of a normed linear )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(space Additionally, eight new appendices have been )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(added and cover topicssuch as: the Fast Fourier )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(Transform; the spectral radius theorem;the Lorentz )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(group; the compactness criterion for )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(finitedimensionality; the characterization of )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(commentators; proof ofLiapunov's stability criterion; )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(the construction of the JordanCanonical form of )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(matrices; and Carl Pearcy's elegant proof ofHalmos' )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(conjecture about the numerical range of matrices. )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(Clear, concise, and superbly organized, Linear Algebra )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(and ItsApplications, Second Edition serves as an )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(excellent text foradvanced undergraduate- and )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(graduate-level courses in linearalgebra. Its )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(comprehensive treatment of the subject also makes )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(itan ideal reference or self-study for industry )] TJ ET
endstream
endobj
31 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 32 0 R
>>
endobj
32 0 obj
<<
/Length 2855 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(professionals.)] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(Linear Models and the Relevant Distributions and )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(Matrix Algebra)] TJ ET
BT 125.871 512.546 Td /F1 14.2 Tf [( David A. Harville 2018-03-22 Linear )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(Models and the Relevant Distributions and Matrix )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(Algebra provides in-depth and detailed coverage of the )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(use of linear statistical models as a basis for )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(parametric and predictive inference. It can be a )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(valuable reference, a primary or secondary text in a )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(graduate-level course on linear models, or a resource )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(used \(in a course on mathematical statistics\) to )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(illustrate various theoretical concepts in the context of )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(a relatively complex setting of great practical )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(importance. Features: Provides coverage of matrix )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(algebra that is extensive and relatively self-contained )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(and does so in a meaningful context Provides )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(thorough coverage of the relevant statistical )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(distributions, including spherically and elliptically )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(symmetric distributions Includes extensive coverage of )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(multiple-comparison procedures \(and of simultaneous )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(confidence intervals\), including procedures for )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(controlling the k-FWER and the FDR Provides )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(thorough coverage \(complete with detailed and highly )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(accessible proofs\) of results on the properties of )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(various linear-model procedures, including those of )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(least squares estimators and those of the F test. )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(Features the use of real data sets for illustrative )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(purposes Includes many exercises David Harville )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(served for 10 years as a mathematical statistician in )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(the Applied Mathematics Research Laboratory of the )] TJ ET
endstream
endobj
33 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 34 0 R
>>
endobj
34 0 obj
<<
/Length 2858 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(Aerospace Research Laboratories at Wright-Patterson )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(AFB, Ohio, 20 years as a full professor in Iowa State )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(University’s Department of Statistics where he now )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(has emeritus status, and seven years as a research )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(staff member of the Mathematical Sciences )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(Department of IBM’s T.J. Watson Research Center. )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(He has considerable relevant experience, having )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(taught M.S. and Ph.D. level courses in linear models, )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(been the thesis advisor of 10 Ph.D. graduates, and )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(authored or co-authored two books and more than 80 )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(research articles. His work has been recognized )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(through his election as a Fellow of the American )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(Statistical Association and of the Institute of )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(Mathematical Statistics and as a member of the )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(International Statistical Institute.)] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(Matrix Algebra for Applied Economics)] TJ ET
BT 271.592 286.356 Td /F1 14.2 Tf [( Shayle R. )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(Searle 2001-09-13 Coverage of matrix algebra for )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(economists and students of economics Matrix Algebra )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(for Applied Economics explains the important tool of )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(matrix algebra for students of economics and )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(practicing economists. It includes examples that )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(demonstrate the foundation operations of matrix )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(algebra and illustrations of using the algebra for a )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(variety of economic problems. The authors present the )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(scope and basic definitions of matrices, their arithmetic )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(and simple operations, and describe special matrices )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(and their properties, including the analog of division. )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(They provide in-depth coverage of necessary theory )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(and deal with concepts and operations for using )] TJ ET
endstream
endobj
35 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 36 0 R
>>
endobj
36 0 obj
<<
/Length 2847 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(matrices in real-life situations. They discuss linear )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(dependence and independence, as well as rank, )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(canonical forms, generalized inverses, eigenroots, and )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(vectors. Topics of prime interest to economists are )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(shown to be simplified using matrix algebra in linear )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(equations, regression, linear models, linear )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(programming, and Markov chains. Highlights include: * )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(Numerous examples of real-world applications * )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(Challenging exercises throughout the book * )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(Mathematics understandable to readers of all )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(backgrounds * Extensive up-to-date reference material )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(Matrix Algebra for Applied Economics provides )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(excellent guidance for advanced undergraduate )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(students and also graduate students. Practicing )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(economists who want to sharpen their skills will find )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(this book both practical and easy-to-read, no matter )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(what their applied interests.)] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(Kronecker Products and Matrix Calculus with )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(Applications)] TJ ET
BT 110.837 234.158 Td /F1 14.2 Tf [( Alexander Graham 2018-06-13 Enhanced )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(by many worked examples, problems, and solutions, )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(this in-depth text is suitable for undergraduates and )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(presents a great deal of information previously only )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(available in specialized and hard-to-find texts. 1981 )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(edition.)] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(Multivariate Observations)] TJ ET
BT 194.770 129.763 Td /F1 14.2 Tf [( George A. F. Seber 2009-09-)] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(25 WILEY-INTERSCIENCE PAPERBACK SERIES )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(The Wiley-Interscience Paperback Series consists of )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(selected books that have been made more accessible )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(to consumers in an effort to increase global appeal and )] TJ ET
endstream
endobj
37 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 38 0 R
>>
endobj
38 0 obj
<<
/Length 2865 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(general circulation. With these new unabridged )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(softcover volumes, Wiley hopes to extend the lives of )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(these works by making them available to future )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(generations of statisticians, mathematicians, and )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(scientists. "In recent years many monographs have )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(been published on specialized aspects of multivariate )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(data-analysis–on cluster analysis, multidimensional )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(scaling, correspondence analysis, developments of )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(discriminant analysis, graphical methods, )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(classification, and so on. This book is an attempt to )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(review these newer methods together with the )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(classical theory. . . . This one merits two cheers." –J. )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(C. Gower, Department of Statistics Rothamsted )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(Experimental Station, Harpenden, U.K. Review in )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(Biometrics, June 1987 Multivariate Observations is a )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(comprehensive sourcebook that treats data-oriented )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(techniques as well as classical methods. Emphasis is )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(on principles rather than mathematical detail, and )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(coverage ranges from the practical problems of )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(graphically representing high-dimensional data to the )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(theoretical problems relating to matrices of random )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(variables. Each chapter serves as a self-contained )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(survey of a specific topic. The book includes many )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(numerical examples and over 1,100 references.)] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(Linear Regression Analysis)] TJ ET
BT 206.654 129.763 Td /F1 14.2 Tf [( George Arthur Frederick )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(Seber 1977 )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(A Matrix Handbook for Statisticians)] TJ ET
BT 255.760 94.964 Td /F1 14.2 Tf [( George A. F. )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(Seber 2008-01-28 A comprehensive, must-have )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(handbook of matrix methods with a unique emphasis )] TJ ET
endstream
endobj
39 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 40 0 R
>>
endobj
40 0 obj
<<
/Length 2850 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(on statistical applications This timely book, A Matrix )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(Handbook for Statisticians, provides a comprehensive, )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(encyclopedic treatment of matrices as they relate to )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(both statistical concepts and methodologies. Written )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(by an experienced authority on matrices and statistical )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(theory, this handbook is organized by topic rather than )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(mathematical developments and includes numerous )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(references to both the theory behind the methods and )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(the applications of the methods. A uniform approach is )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(applied to each chapter, which contains four parts: a )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(definition followed by a list of results; a short list of )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(references to related topics in the book; one or more )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(references to proofs; and references to applications. )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(The use of extensive cross-referencing to topics within )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(the book and external referencing to proofs allows for )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(definitions to be located easily as well as )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(interrelationships among subject areas to be )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(recognized. A Matrix Handbook for Statisticians )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(addresses the need for matrix theory topics to be )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(presented together in one book and features a )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(collection of topics not found elsewhere under one )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(cover. These topics include: Complex matrices A wide )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(range of special matrices and their properties Special )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(products and operators, such as the Kronecker )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(product Partitioned and patterned matrices Matrix )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(analysis and approximation Matrix optimization )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(Majorization Random vectors and matrices )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(Inequalities, such as probabilistic inequalities )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(Additional topics, such as rank, eigenvalues, )] TJ ET
endstream
endobj
41 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 42 0 R
>>
endobj
42 0 obj
<<
/Length 3010 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(determinants, norms, generalized inverses, linear and )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(quadratic equations, differentiation, and Jacobians, are )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(also included. The book assumes a fundamental )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(knowledge of vectors and matrices, maintains a )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(reasonable level of abstraction when appropriate, and )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(provides a comprehensive compendium of linear )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(algebra results with use or potential use in statistics. A )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(Matrix Handbook for Statisticians is an essential, one-)] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(of-a-kind book for graduate-level courses in advanced )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(statistical studies including linear and nonlinear )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(models, multivariate analysis, and statistical )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(computing. It also serves as an excellent self-study )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(guide for statistical researchers.)] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(Matrix Algebra)] TJ ET
BT 125.871 321.155 Td /F1 14.2 Tf [( James E. Gentle 2007-07-27 This )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(much-needed work presents, among other things, the )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(relevant aspects of the theory of matrix algebra for )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(applications in statistics. Written in an informal style, it )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(addresses computational issues and places more )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(emphasis on applications than existing texts.)] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(Linear Models in Statistics)] TJ ET
0.285 w 0 J [ ] 0 d
34.016 214.408 m 199.529 214.408 l S
BT 199.529 216.759 Td /F1 14.2 Tf [( Alvin C. Rencher 2008-01-)] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(18 The essential introduction to the theory and )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(application of linear models—now in a valuable new )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(edition Since most advanced statistical tools are )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(generalizations of the linear model, it is neces-sary to )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(first master the linear model in order to move forward )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(to more advanced concepts. The linear model remains )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(the main tool of the applied statistician and is central to )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(the training of any statistician regardless of whether )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(the focus is applied or theoretical. This completely )] TJ ET
endstream
endobj
43 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 44 0 R
>>
endobj
44 0 obj
<<
/Length 2878 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(revised and updated new edition successfully develops )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(the basic theory of linear models for regression, )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(analysis of variance, analysis of covariance, and linear )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(mixed models. Recent advances in the methodology )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(related to linear mixed models, generalized linear )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(models, and the Bayesian linear model are also )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(addressed. Linear Models in Statistics, Second Edition )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(includes full coverage of advanced topics, such as )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(mixed and generalized linear models, Bayesian linear )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(models, two-way models with empty cells, geometry of )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(least squares, vector-matrix calculus, simultaneous )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(inference, and logistic and nonlinear regression. )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(Algebraic, geometrical, frequentist, and Bayesian )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(approaches to both the inference of linear models and )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(the analysis of variance are also illustrated. Through )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(the expansion of relevant material and the inclusion of )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(the latest technological developments in the field, this )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(book provides readers with the theoretical foundation )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(to correctly interpret computer software output as well )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(as effectively use, customize, and understand linear )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(models. This modern Second Edition features: New )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(chapters on Bayesian linear models as well as random )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(and mixed linear models Expanded discussion of two-)] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(way models with empty cells Additional sections on the )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(geometry of least squares Updated coverage of )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(simultaneous inference The book is complemented )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(with easy-to-read proofs, real data sets, and an )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(extensive bibliography. A thorough review of the )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(requisite matrix algebra has been addedfor transitional )] TJ ET
endstream
endobj
45 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 46 0 R
>>
endobj
46 0 obj
<<
/Length 2799 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(purposes, and numerous theoretical and applied )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(problems have been incorporated with selected )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(answers provided at the end of the book. A related )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(Web site includes additional data sets and SAS® code )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(for all numerical examples. Linear Model in Statistics, )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(Second Edition is a must-have book for courses in )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(statistics, biostatistics, and mathematics at the upper-)] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(undergraduate and graduate levels. It is also an )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(invaluable reference for researchers who need to gain )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(a better understanding of regression and analysis of )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(variance.)] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(Linear Algebra and Matrix Analysis for Statistics)] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(Sudipto Banerjee 2014-06-06 Linear Algebra and )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(Matrix Analysis for Statistics offers a gradual )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(exposition to linear algebra without sacrificing the rigor )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(of the subject. It presents both the vector space )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(approach and the canonical forms in matrix theory. )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(The book is as self-contained as possible, assuming )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(no prior knowledge of linear algebra. The authors first )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(address the rudimentary mechanics of linear systems )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(using Gaussian elimination and the resulting )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(decompositions. They introduce Euclidean vector )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(spaces using less abstract concepts and make )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(connections to systems of linear equations wherever )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(possible. After illustrating the importance of the rank of )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(a matrix, they discuss complementary subspaces, )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(oblique projectors, orthogonality, orthogonal )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(projections and projectors, and orthogonal reduction. )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(The text then shows how the theoretical concepts )] TJ ET
endstream
endobj
47 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 48 0 R
>>
endobj
48 0 obj
<<
/Length 2865 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(developed are handy in analyzing solutions for linear )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(systems. The authors also explain how determinants )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(are useful for characterizing and deriving properties )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(concerning matrices and linear systems. They then )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(cover eigenvalues, eigenvectors, singular value )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(decomposition, Jordan decomposition \(including a )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(proof\), quadratic forms, and Kronecker and Hadamard )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(products. The book concludes with accessible )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(treatments of advanced topics, such as linear iterative )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(systems, convergence of matrices, more general )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(vector spaces, linear transformations, and Hilbert )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(spaces.)] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(Numerical Analysis for Applied Science)] TJ ET
BT 281.880 338.554 Td /F1 14.2 Tf [( Myron B. )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(Allen, III 2011-09-30 Written for graduate students in )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(applied mathematics, engineering and science )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(courses, the purpose of this book is to present topics )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(in "Numerical Analysis" and "Numerical Methods." It )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(will combine the material of both these areas as well )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(as special topics in modern applications. Included at )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(the end of each chapter are a variety of theoretical and )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(computational exercises.)] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(Linear Models for Unbalanced Data)] TJ ET
BT 258.154 181.961 Td /F1 14.2 Tf [( Shayle R. Searle )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(2006-03-17 WILEY-INTERSCIENCE PAPERBACK )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(SERIES The Wiley-Interscience Paperback Series )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(consists of selected books that have been made more )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(accessible to consumers in an effort to increase global )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(appeal and general circulation. With these new )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(unabridged softcover volumes, Wiley hopes to extend )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(the lives of these works by making them available to )] TJ ET
endstream
endobj
49 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 50 0 R
>>
endobj
50 0 obj
<<
/Length 2854 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(future generations of statisticians, mathematicians, )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(and scientists. "[This book] provides an excellent )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(discussion of the methodology and interpretation of )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(linear models analysis of unbalanced data \(data )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(having unequal numbers of observations in the )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(subclasses\), generally without matrices?the author )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(does an excellent job of emphasizing the more )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(practical nature of the book. Highly recommended for )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(graduate and undergraduate libraries." â?"Choice )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [("This is a very comprehensive text, aimed at both )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(students studying linear-model theory and practicing )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(statisticians who require an understanding of the )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(model-fitting procedures incorporated in statistical )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(packages?This book should be considered as a text )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(for college courses as it provides a clearly presented )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(and thorough treatment of linear models. It will also be )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(useful to any practicing statistician who has to analyze )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(unbalanced data, perhaps arising from surveys, and )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(wishes to understand the output from model-fitting )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(procedures and the discrepancies in analysis from one )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(recognized package to another." â?"Biometrics This )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(newly available and affordably priced paperback )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(version of Linear Models for Unbalanced Data offers a )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(presentation of the fundamentals of linear statistical )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(models unique in its total devotion to unbalanced data )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(and its emphasis on the up-to-date cell means model )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(approach to linear models for unbalanced data. Topic )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(coverage includes cell means models, 1-way )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(classification, nested classifications, 2-way )] TJ ET
endstream
endobj
51 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 52 0 R
>>
endobj
52 0 obj
<<
/Length 2902 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(classification with some-cells-empty data, models with )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(covariables, matrix algebra and quadratic forms, linear )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(model theory, and much more.)] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(Matrix Analysis for Statistics)] TJ ET
BT 211.385 495.147 Td /F1 14.2 Tf [( James R. Schott 2016-06-)] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(20 An up-to-date version of the complete, self-)] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(contained introduction to matrix analysis theory and )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(practice Providing accessible and in-depth coverage of )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(the most common matrix methods now used in )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(statistical applications, Matrix Analysis for Statistics, )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(Third Edition features an easy-to-follow theorem/proof )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(format. Featuring smooth transitions between topical )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(coverage, the author carefully justifies the step-by-step )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(process of the most common matrix methods now )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(used in statistical applications, including eigenvalues )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(and eigenvectors; the Moore-Penrose inverse; matrix )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(differentiation; and the distribution of quadratic forms. )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(An ideal introduction to matrix analysis theory and )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(practice, Matrix Analysis for Statistics, Third Edition )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(features: • New chapter or section coverage on )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(inequalities, oblique projections, and antieigenvalues )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(and antieigenvectors • Additional problems and )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(chapter-end practice exercises at the end of each )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(chapter • Extensive examples that are familiar and )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(easy to understand • Self-contained chapters for )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(flexibility in topic choice • Applications of matrix )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(methods in least squares regression and the analyses )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(of mean vectors and covariance matrices Matrix )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(Analysis for Statistics, Third Edition is an ideal )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(textbook for upper-undergraduate and graduate-level )] TJ ET
endstream
endobj
53 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 54 0 R
>>
endobj
54 0 obj
<<
/Length 2922 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(courses on matrix methods, multivariate analysis, and )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(linear models. The book is also an excellent reference )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(for research professionals in applied statistics. James )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(R. Schott, PhD, is Professor in the Department of )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(Statistics at the University of Central Florida. He has )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(published numerous journal articles in the area of )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(multivariate analysis. Dr. Schott’s research interests )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(include multivariate analysis, analysis of covariance )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(and correlation matrices, and dimensionality reduction )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(techniques.)] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(Mathematics for Machine Learning)] TJ ET
0.285 w 0 J [ ] 0 d
34.016 371.001 m 252.596 371.001 l S
BT 252.596 373.352 Td /F1 14.2 Tf [( Marc Peter )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(Deisenroth 2020-04-23 The fundamental mathematical )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(tools needed to understand machine learning include )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(linear algebra, analytic geometry, matrix )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(decompositions, vector calculus, optimization, )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(probability and statistics. These topics are traditionally )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(taught in disparate courses, making it hard for data )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(science or computer science students, or )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(professionals, to efficiently learn the mathematics. This )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(self-contained textbook bridges the gap between )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(mathematical and machine learning texts, introducing )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(the mathematical concepts with a minimum of )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(prerequisites. It uses these concepts to derive four )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(central machine learning methods: linear regression, )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(principal component analysis, Gaussian mixture )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(models and support vector machines. For students )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(and others with a mathematical background, these )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(derivations provide a starting point to machine learning )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(texts. For those learning the mathematics for the first )] TJ ET
endstream
endobj
55 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 56 0 R
>>
endobj
56 0 obj
<<
/Length 2820 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(time, the methods help build intuition and practical )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(experience with applying mathematical concepts. )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(Every chapter includes worked examples and )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(exercises to test understanding. Programming tutorials )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(are offered on the book's web site.)] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(Hadamard Matrices)] TJ ET
BT 158.333 460.349 Td /F1 14.2 Tf [( Jennifer Seberry 2020-08-25 Up-)] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(to-date resource on Hadamard matrices Hadamard )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(Matrices: Constructions using Number Theory and )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(Algebra provides students with a discussion of the )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(basic definitions used for Hadamard Matrices as well )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(as more advanced topics in the subject, including: )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(Gauss sums, Jacobi sums and relative Gauss sums )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(Cyclotomic numbers Plug-in matrices, arrays, )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(sequences and M-structure Galois rings and Menon )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(Hadamard differences sets Paley difference sets and )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(Paley type partial difference sets Symmetric )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(Hadamard matrices, skew Hadamard matrices and )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(amicable Hadamard matrices A discussion of )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(asymptotic existence of Hadamard matrices Maximal )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(determinant matrices, embeddability of Hadamard )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(matrices and growth problem for Hadamard matrices )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(The book can be used as a textbook for graduate )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(courses in combinatorics, or as a reference for )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(researchers studying Hadamard matrices. Utilized in )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(the fields of signal processing and design experiments, )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(Hadamard matrices have been used for 150 years, )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(and remain practical today. Hadamard Matrices )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(combines a thorough discussion of the basic concepts )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(underlying the subject matter with more advanced )] TJ ET
endstream
endobj
57 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 58 0 R
>>
endobj
58 0 obj
<<
/Length 2851 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(applications that will be of interest to experts in the )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(area.)] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(Modern Regression Methods)] TJ ET
BT 216.957 512.546 Td /F1 14.2 Tf [( Thomas P. Ryan 2008-)] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(11-10 "Over the years, I have had the opportunity to )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(teach several regression courses, and I cannot think of )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(a better undergraduate text than this one." \(The )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(American Statistician\) "The book is well written and )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(has many exercises. It can serve as a very good )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(textbook for scientists and engineers, with only basic )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(statistics as a prerequisite. I also highly recommend it )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(to practitioners who want to solve real-life prediction )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(problems." \(Computing Reviews\) Modern Regression )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(Methods, Second Edition maintains the accessible )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(organization, breadth of coverage, and cutting-edge )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(appeal that earned its predecessor the title of being )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(one of the top five books for statisticians by an Amstat )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(News book editor in 2003. This new edition has been )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(updated and enhanced to include all-new information )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(on the latest advances and research in the evolving )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(field of regression analysis. The book provides a )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(unique treatment of fundamental regression methods, )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(such as diagnostics, transformations, robust )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(regression, and ridge regression. Unifying key )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(concepts and procedures, this new edition emphasizes )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(applications to provide a more hands-on and )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(comprehensive understanding of regression )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(diagnostics. New features of the Second Edition )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(include: A revised chapter on logistic regression, )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(including improved methods of parameter estimation A )] TJ ET
endstream
endobj
59 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 60 0 R
>>
endobj
60 0 obj
<<
/Length 2881 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(new chapter focusing on additional topics of study in )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(regression, including quantile regression, )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(semiparametric regression, and Poisson regression A )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(wealth of new and updated exercises with worked )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(solutions An extensive FTP site complete with Minitab )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(macros, which allow the reader to compute analyses, )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(and specialized procedures Updated references at the )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(end of each chapter that direct the reader to the )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(appropriate resources for further study An accessible )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(guide to state-of-the-art regression techniques, )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(Modern Regression Methods, Second Edition is an )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(excellent book for courses in regression analysis at the )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(upper-undergraduate and graduate levels. It is also a )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(valuable reference for practicing statisticians, )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(engineers, and physical scientists.)] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(Mathematical Methods for Finance)] TJ ET
BT 252.596 286.356 Td /F1 14.2 Tf [( Sergio M. Focardi )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(2013-09-04 The mathematical and statistical tools )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(needed in the rapidlygrowing quantitative finance field )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(With the rapid growth in quantitative finance, )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(practitionersmust achieve a high level of proficiency in )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(math and statistics.Mathematical Methods and )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(Statistical Tools for Finance, partof the Frank J. )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(Fabozzi Series, has been created with this in )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(mind.Designed to provide the tools needed to apply )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(finance theory toreal world financial markets, this book )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(offers a wealth of insightsand guidance in practical )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(applications. It contains applications that are broader )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(in scope from what iscovered in a typical book on )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(mathematical techniques. Most booksfocus almost )] TJ ET
endstream
endobj
61 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 62 0 R
>>
endobj
62 0 obj
<<
/Length 2894 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(exclusively on derivatives pricing, the applicationsin )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(this book cover not only derivatives and asset pricing )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(but alsorisk management—including credit risk )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(management—andportfolio management. Includes an )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(overview of the essential math and statisticalskills )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(required to succeed in quantitative finance Offers the )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(basic mathematical concepts that apply to the fieldof )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(quantitative finance, from sets and distances to )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(functions andvariables The book also includes )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(information on calculus, matrix algebra,differential )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(equations, stochastic integrals, and much more Written )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(by Sergio Focardi, one of the world's leading authorsin )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(high-level finance Drawing on the author's )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(perspectives as a practitioner andacademic, each )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(chapter of this book offers a solid foundation inthe )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(mathematical tools and techniques need to succeed in )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(today'sdynamic world of finance.)] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(Computational Methods of Linear Algebra)] TJ ET
BT 296.971 251.558 Td /F1 14.2 Tf [( Granville )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(Sewell 2005-09-19 )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(Generalized Linear Mixed Models)] TJ ET
BT 246.255 216.759 Td /F1 14.2 Tf [( Charles E. )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(McCulloch 2003 Wiley Series in Probability and )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(Statistics A modern perspective on mixed models The )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(availability of powerful computing methods in recent )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(decades has thrust linear and nonlinear mixed models )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(into the mainstream of statistical application. This )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(volume offers a modern perspective on generalized, )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(linear, and mixed models, presenting a unified and )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(accessible treatment of the newest statistical methods )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(for analyzing correlated, nonnormally distributed data. )] TJ ET
endstream
endobj
63 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 64 0 R
>>
endobj
64 0 obj
<<
/Length 2874 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(As a follow-up to Searle's classic, Linear Models, and )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(Variance Components by Searle, Casella, and )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(McCulloch, this new work progresses from the basic )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(one-way classification to generalized linear mixed )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(models. A variety of statistical methods are explained )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(and illustrated, with an emphasis on maximum )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(likelihood and restricted maximum likelihood. An )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(invaluable resource for applied statisticians and )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(industrial practitioners, as well as students interested )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(in the latest results, Generalized, Linear, and Mixed )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(Models features: * A review of the basics of linear )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(models and linear mixed models * Descriptions of )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(models for nonnormal data, including generalized )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(linear and nonlinear models * Analysis and illustration )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(of techniques for a variety of real data sets * )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(Information on the accommodation of longitudinal data )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(using these models * Coverage of the prediction of )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(realized values of random effects * A discussion of the )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(impact of computing issues on mixed models)] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(Variance Components)] TJ ET
BT 174.991 216.759 Td /F1 14.2 Tf [( Shayle R. Searle 2009-09-25 )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(WILEY-INTERSCIENCE PAPERBACK SERIES The )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(Wiley-Interscience Paperback Series consists of )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(selected books that have been made more accessible )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(to consumers in an effort to increase global appeal and )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(general circulation. With these new unabridged )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(softcover volumes, Wiley hopes to extend the lives of )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(these works by making them available to future )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(generations of statisticians, mathematicians, and )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(scientists. ". . .Variance Components is an excellent )] TJ ET
endstream
endobj
65 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 66 0 R
>>
endobj
66 0 obj
<<
/Length 2876 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(book. It is organized and well written, and provides )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(many references to a variety of topics. I recommend it )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(to anyone with interest in linear models." —Journal of )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(the American Statistical Association "This book )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(provides a broad coverage of methods for estimating )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(variance components which appeal to students and )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(research workers . . . The authors make an )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(outstanding contribution to teaching and research in )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(the field of variance component estimation." )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(—Mathematical Reviews "The authors have done an )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(excellent job in collecting materials on a broad range )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(of topics. Readers will indeed gain from using this )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(book . . . I must say that the authors have done a )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(commendable job in their scholarly presentation." )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(—Technometrics This book focuses on summarizing )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(the variability of statistical data known as the analysis )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(of variance table. Penned in a readable style, it )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(provides an up-to-date treatment of research in the )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(area. The book begins with the history of analysis of )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(variance and continues with discussions of balanced )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(data, analysis of variance for unbalanced data, )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(predictions of random variables, hierarchical models )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(and Bayesian estimation, binary and discrete data, and )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(the dispersion mean model.)] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(Principles of Linear Algebra with Mathematica)] TJ ET
BT 323.077 129.763 Td /F1 14.2 Tf [( Kenneth )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(M. Shiskowski 2013-06-07 A hands-on introduction to )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(the theoretical and computationalaspects of linear )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(algebra using Mathematica® Many topics in linear )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(algebra are simple, yet computationallyintensive, and )] TJ ET
endstream
endobj
67 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 68 0 R
>>
endobj
68 0 obj
<<
/Length 2818 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(computer algebra systems such as Mathematica®are )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(essential not only for learning to apply the concepts )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(tocomputationally challenging problems, but also for )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(visualizing manyof the geometric aspects within this )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(field of study. Principles ofLinear Algebra with )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(Mathematica uniquely bridges the gap )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(betweenbeginning linear algebra and computational )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(linear algebra that isoften encountered in applied )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(settings, and the commands required tosolve complex )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(and computationally challenging problems )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(usingMathematica are provided. The book begins with )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(an introduction to the commands andprogramming )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(guidelines for working with Mathematica. Next, )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(theauthors explore linear systems of equations and )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(matrices,applications of linear systems and matrices, )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(determinants,inverses, and Cramer's rule. Basic linear )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(algebra topics, such asvectors, dot product, cross )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(product, and vector projection areexplored, as well as )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(a unique variety of more advanced topicsincluding )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(rotations in space, 'rolling' a circle along a curve, )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(andthe TNB Frame. Subsequent chapters feature )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(coverage of lineartransformations from Rn to Rm, the )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(geometry of linear and affinetransformations, with an )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(exploration of their effect on arclength,area, and )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(volume, least squares fits, and pseudoinverses. )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(Mathematica is used to enhance concepts and is )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(seamlesslyintegrated throughout the book through )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(symbolic manipulations,numerical computations, )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(graphics in two and three dimensions,animations, and )] TJ ET
endstream
endobj
69 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 70 0 R
>>
endobj
70 0 obj
<<
/Length 2870 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(programming. Each section concludes with )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(standardproblems in addition to problems that were )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(specifically designed tobe solved with Mathematica, )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(allowing readers to test theircomprehension of the )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(presented material. All related Mathematicacode is )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(available on a corresponding website, along with )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(solutionsto problems and additional topical resources. )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(Extensively class-tested to ensure an accessible )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(presentation,Principles of Linear Algebra with )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(Mathematica is an excellent bookfor courses on linear )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(algebra at the undergraduate level. The bookis also an )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(ideal reference for students and professionals who )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(wouldlike to gain a further understanding of the use of )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(Mathematica tosolve linear algebra problems.)] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(Statistical Tests for Mixed Linear Models)] TJ ET
BT 289.803 303.755 Td /F1 14.2 Tf [( André I. Khuri )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(2011-09-09 An advanced discussion of linear models )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(with mixed or randomeffects. In recent years a )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(breakthrough has occurred in our ability todraw )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(inferences from exact and optimum tests of variance )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(componentmodels, generating much research activity )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(that relies on linearmodels with mixed and random )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(effects. This volume covers the mostimportant )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(research of the past decade as well as the )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(latestdevelopments in hypothesis testing. It compiles )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(all currentlyavailable results in the area of exact and )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(optimum tests forvariance component models and )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(offers the only comprehensivetreatment for these )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(models at an advanced level. Statistical Tests for )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(Mixed Linear Models: Combines analysis and testing )] TJ ET
endstream
endobj
71 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 72 0 R
>>
endobj
72 0 obj
<<
/Length 2702 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(in one self-containedvolume. Describes analysis of )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(variance \(ANOVA\) procedures in balancedand )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(unbalanced data situations. Examines methods for )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(determining the effect of imbalance ondata analysis. )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(Explains exact and optimum tests and methods for )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(theirderivation. Summarizes test procedures for )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(multivariate mixed and randommodels. Enables novice )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(readers to skip the derivations and discussionson )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(optimum tests. Offers plentiful examples and )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(exercises, manyof which are numerical in flavor. )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(Provides solutions to selected exercises. Statistical )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(Tests for Mixed Linear Models is an )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(accessiblereference for researchers in analysis of )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(variance, experimentaldesign, variance component )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(analysis, and linear mixed models. It isalso an )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(important text for graduate students interested in )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(mixedmodels.)] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(Advanced Calculus with Applications in Statistics)] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(André I. Khuri 2003-04-14 Designed to help motivate )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(the learning of advanced calculus by demonstrating its )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(relevance in the field of statistics, this successful text )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(features detailed coverage of optimization techniques )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(and their applications in statistics while introducing the )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(reader to approximation theory. The Second Edition )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(provides substantial new coverage of the material, )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(including three new chapters and a large appendix that )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(contains solutions to almost all of the exercises in the )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(book. Applications of some of these methods in )] TJ ET
endstream
endobj
73 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 74 0 R
>>
endobj
74 0 obj
<<
/Length 2888 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(statistics are discusses.)] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(The R Book)] TJ ET
BT 109.256 529.946 Td /F1 14.2 Tf [( Michael J. Crawley 2007-06-13 The high-)] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(level language of R is recognized as one of the most )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(powerful and flexible statistical software environments, )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(and is rapidly becoming the standard setting for )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(quantitative analysis, statistics and graphics. R )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(provides free access to unrivalled coverage and )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(cutting-edge applications, enabling the user to apply )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(numerous statistical methods ranging from simple )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(regression to time series or multivariate analysis. )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(Building on the success of the author’s bestselling )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(Statistics: An Introduction using R, The R Book is )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(packed with worked examples, providing an all )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(inclusive guide to R, ideal for novice and more )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(accomplished users alike. The book assumes no )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(background in statistics or computing and introduces )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(the advantages of the R environment, detailing its )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(applications in a wide range of disciplines. Provides )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(the first comprehensive reference manual for the R )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(language, including practical guidance and full )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(coverage of the graphics facilities. Introduces all the )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(statistical models covered by R, beginning with simple )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(classical tests such as chi-square and t-test. Proceeds )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(to examine more advance methods, from regression )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(and analysis of variance, through to generalized linear )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(models, generalized mixed models, time series, spatial )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(statistics, multivariate statistics and much more. The R )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(Book is aimed at undergraduates, postgraduates and )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(professionals in science, engineering and medicine. It )] TJ ET
endstream
endobj
75 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 76 0 R
>>
endobj
76 0 obj
<<
/Length 2949 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(is also ideal for students and professionals in statistics, )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(economics, geography and the social sciences.)] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(Matrix Algebra Useful for Statistics, Second Edition)] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(Shayle R. Searle 2017 Featuring numerous applied )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(illustrations, numerical examples, and exercises, this )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(thoroughly updated guide addresses matrix algebra )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(that is useful in the statistical analysis of data as well )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(as within statistics as a whole. --)] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(Methods of Multivariate Analysis)] TJ ET
0.285 w 0 J [ ] 0 d
34.016 405.800 m 238.332 405.800 l S
BT 238.332 408.151 Td /F1 14.2 Tf [( Alvin C. Rencher )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(2003-04-14 Amstat News asked three review editors to )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(rate their topfive favorite books in the September 2003 )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(issue. Methods ofMultivariate Analysis was among )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(those chosen. When measuring several variables on a )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(complex experimental unit,it is often necessary to )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(analyze the variables simultaneously,rather than )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(isolate them and consider them )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(individually.Multivariate analysis enables researchers )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(to explore the jointperformance of such variables and )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(to determine the effect of eachvariable in the presence )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(of the others. The Second Edition of AlvinRencher's )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(Methods of Multivariate Analysis provides studentsof )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(all statistical backgrounds with both the fundamental )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(and moresophisticated skills necessary to master the )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(discipline. To illustrate multivariate applications, the )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(author providesexamples and exercises based on fifty-)] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(nine real data sets from awide variety of scientific )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(fields. Rencher takes a "methods"approach to his )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(subject, with an emphasis on how students )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(andpractitioners can employ multivariate analysis in )] TJ ET
endstream
endobj
77 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 78 0 R
>>
endobj
78 0 obj
<<
/Length 2900 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(real-lifesituations. The Second Edition contains revised )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(and updatedchapters from the critically acclaimed First )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(Edition as well asbrand-new chapters on: Cluster )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(analysis Multidimensional scaling Correspondence )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(analysis Biplots Each chapter contains exercises, with )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(corresponding answers andhints in the appendix, )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(providing students the opportunity to testand extend )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(their understanding of the subject. Methods )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(ofMultivariate Analysis provides an authoritative )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(reference forstatistics students as well as for practicing )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(scientists andclinicians.)] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(Matrix Algebra for Linear Models)] TJ ET
BT 239.914 355.953 Td /F1 14.2 Tf [( Marvin H. J. Gruber )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(2013-12-13 A self-contained introduction to matrix )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(analysis theory andapplications in the field of statistics )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(Comprehensive in scope, Matrix Algebra for Linear )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(Modelsoffers a succinct summary of matrix theory and )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(its relatedapplications to statistics, especially linear )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(models. The bookprovides a unified presentation of the )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(mathematical properties andstatistical applications of )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(matrices in order to define andmanipulate data. Written )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(for theoretical and applied statisticians, the )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(bookutilizes multiple numerical examples to illustrate )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(key ideas,methods, and techniques crucial to )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(understanding matrixalgebra’s application in linear )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(models. Matrix Algebra forLinear Models expertly )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(balances concepts and methods allowingfor a side-by-)] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(side presentation of matrix theory and its linearmodel )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(applications. Including concise summaries on each )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(topic, thebook also features: Methods of deriving )] TJ ET
endstream
endobj
79 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 80 0 R
>>
endobj
80 0 obj
<<
/Length 2899 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(results from the properties of eigenvaluesand the )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(singular value decomposition Solutions to matrix )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(optimization problems for obtaining moreefficient )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(biased estimators for parameters in linear )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(regressionmodels A section on the generalized )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(singular value decomposition Multiple chapter )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(exercises with selected answers to )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(enhanceunderstanding of the presented material )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(Matrix Algebra for Linear Models is an ideal textbook )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(foradvanced undergraduate and graduate-level )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(courses on statistics,matrices, and linear algebra. The )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(book is also an excellentreference for statisticians, )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(engineers, economists, and readersinterested in the )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(linear statistical model.)] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(Machine Learning and Big Data)] TJ ET
0.285 w 0 J [ ] 0 d
34.016 301.404 m 233.615 301.404 l S
BT 233.615 303.755 Td /F1 14.2 Tf [( Uma N. Dulhare 2020-)] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(09-01 Currently many different application areas for )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(Big Data \(BD\) and Machine Learning \(ML\) are being )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(explored. These promising application areas for )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(BD/ML are the social sites, search engines, multimedia )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(sharing sites, various stock exchange sites, online )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(gaming, online survey sites and various news sites, )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(and so on. To date, various use-cases for this )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(application area are being researched and developed. )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(Software applications are already being published and )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(used in various settings from education and training to )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(discover useful hidden patterns and other information )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(like customer choices and market trends that can help )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(organizations make more informed and customer-)] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(oriented business decisions. Combining BD with ML )] TJ ET
endstream
endobj
81 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 82 0 R
>>
endobj
82 0 obj
<<
/Length 2845 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(will provide powerful, largely unexplored application )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(areas that will revolutionize practice in Videos )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(Surveillance, Social Media Services, Email Spam and )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(Malware Filtering, Online Fraud Detection, and so on. )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(It is very important to continuously monitor and )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(understand these effects from safety and societal point )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(of view. Hence, the main purpose of this book is for )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(researchers, software developers and practitioners, )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(academicians and students to showcase novel use-)] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(cases and applications, present empirical research )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(results from user-centered qualitative and quantitative )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(experiments of these new applications, and facilitate a )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(discussion forum to explore the latest trends in big )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(data and machine learning by providing algorithms )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(which can be trained to perform interdisciplinary )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(techniques such as statistics, linear algebra, and )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(optimization and also create automated systems that )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(can sift through large volumes of data at high speed to )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(make predictions or decisions without human )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(intervention)] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(A User's Guide to Principal Components)] TJ ET
BT 288.578 199.360 Td /F1 14.2 Tf [( J. Edward )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(Jackson 2005-01-21 WILEY-INTERSCIENCE )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(PAPERBACK SERIES The Wiley-Interscience )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(Paperback Series consists of selectedbooks that have )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(been made more accessible to consumers in an )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(effortto increase global appeal and general circulation. )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(With these newunabridged softcover volumes, Wiley )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(hopes to extend the lives ofthese works by making )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(them available to future generations ofstatisticians, )] TJ ET
endstream
endobj
83 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 84 0 R
>>
endobj
84 0 obj
<<
/Length 2889 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(mathematicians, and scientists. From the Reviews of A )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(User’s Guide to PrincipalComponents "The book is )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(aptly and correctly named–A User’sGuide. It is the kind )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(of book that a user at any level, novice orskilled )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(practitioner, would want to have at hand for )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(autotutorial,for refresher, or as a general-purpose )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(guide through the maze ofmodern PCA." )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(–Technometrics "I recommend A User’s Guide to )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(Principal Components toanyone who is running )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(multivariate analyses, or who contemplatesperforming )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(such analyses. Those who write their own software )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(willfind the book helpful in designing better programs. )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(Those who useoff-the-shelf software will find it )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(invaluable in interpreting theresults." –Mathematical )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(Geology)] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(Applied Regression Analysis)] TJ ET
0.285 w 0 J [ ] 0 d
34.016 284.005 m 214.577 284.005 l S
BT 214.577 286.356 Td /F1 14.2 Tf [( Norman R. Draper 2014-)] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(08-25 An outstanding introduction to the fundamentals )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(of regression analysis-updated and expanded The )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(methods of regression analysis are the most widely )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(used statistical tools for discovering the relationships )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(among variables. This classic text, with its emphasis )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(on clear, thorough presentation of concepts and )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(applications, offers a complete, easily accessible )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(introduction to the fundamentals of regression )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(analysis. Assuming only a basic knowledge of )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(elementary statistics, Applied Regression Analysis, )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(Third Edition focuses on the fitting and checking of )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(both linear and nonlinear regression models, using )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(small and large data sets, with pocket calculators or )] TJ ET
endstream
endobj
85 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Contents 86 0 R
>>
endobj
86 0 obj
<<
/Length 2811 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(computers. This Third Edition features separate )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(chapters on multicollinearity, generalized linear )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(models, mixture ingredients, geometry of regression, )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(robust regression, and resampling procedures. )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(Extensive support materials include sets of carefully )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(designed exercises with full or partial solutions and a )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(series of true/false questions with answers. All data )] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(sets used in both the text and the exercises can be )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(found on the companion disk at the back of the book. )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(For analysts, researchers, and students in university, )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(industrial, and government courses on regression, this )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(text is an excellent introduction to the subject and an )] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(efficient means of learning how to use a valuable )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(analytical tool. It will also prove an invaluable )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(reference resource for applied scientists and )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(statisticians.)] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(Statistical Factor Analysis and Related Methods)] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(Alexander T. Basilevsky 2009-09-25 Statistical Factor )] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(Analysis and Related Methods Theory and )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(Applications In bridging the gap between the )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(mathematical and statistical theory of factor analysis, )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(this new work represents the first unified treatment of )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(the theory and practice of factor analysis and latent )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(variable models. It focuses on such areas as: * The )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(classical principal components model and sample-)] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(population inference * Several extensions and )] TJ ET
BT 34.016 94.964 Td /F1 14.2 Tf [(modifications of principal components, including Q and )] TJ ET
BT 34.016 77.565 Td /F1 14.2 Tf [(three-mode analysis and principal components in the )] TJ ET
BT 34.016 60.166 Td /F1 14.2 Tf [(complex domain * Maximum likelihood and weighted )] TJ ET
endstream
endobj
87 0 obj
<< /Type /Page
/MediaBox [0.000 0.000 419.530 595.280]
/Parent 3 0 R
/Annots [ 89 0 R ]
/Contents 88 0 R
>>
endobj
88 0 obj
<<
/Length 2973 >>
stream
0.000 0.000 0.000 rg
0.000 0.000 0.000 RG
0.285 w 0 J [ ] 0 d
BT 34.016 547.345 Td /F1 14.2 Tf [(factor models, factor identification, factor rotation, and )] TJ ET
BT 34.016 529.946 Td /F1 14.2 Tf [(the estimation of factor scores * The use of factor )] TJ ET
BT 34.016 512.546 Td /F1 14.2 Tf [(models in conjunction with various types of data )] TJ ET
BT 34.016 495.147 Td /F1 14.2 Tf [(including time series, spatial data, rank orders, and )] TJ ET
BT 34.016 477.748 Td /F1 14.2 Tf [(nominal variable * Applications of factor models to the )] TJ ET
BT 34.016 460.349 Td /F1 14.2 Tf [(estimation of functional forms and to least squares of )] TJ ET
BT 34.016 442.949 Td /F1 14.2 Tf [(regression estimators)] TJ ET
BT 34.016 425.550 Td /F1 14.2 Tf [(The Collected Works of Shayle R. Searle)] TJ ET
BT 292.981 425.550 Td /F1 14.2 Tf [( Shayle R. )] TJ ET
BT 34.016 408.151 Td /F1 14.2 Tf [(Searle 2009-05-26 This set features: Variance )] TJ ET
BT 34.016 390.752 Td /F1 14.2 Tf [(Components by Shayle R. Searle, George Casella, )] TJ ET
BT 34.016 373.352 Td /F1 14.2 Tf [(Charles E. McCulloch \(978-0-470-00959-8\) Matrix )] TJ ET
BT 34.016 355.953 Td /F1 14.2 Tf [(Algebra for Useful Statistics by Shayle R. Searle \(978-)] TJ ET
BT 34.016 338.554 Td /F1 14.2 Tf [(0-470-00961-1\) Linear Models for Unbalanced Data by )] TJ ET
BT 34.016 321.155 Td /F1 14.2 Tf [(Shayle R. Searle \(978-0-470-04004-1\) Generalized, )] TJ ET
BT 34.016 303.755 Td /F1 14.2 Tf [(Linear, and Mixed Models, Second Edition by Charles )] TJ ET
BT 34.016 286.356 Td /F1 14.2 Tf [(E. McCulloch, Shayle R. Searle, John M. Neuhaus )] TJ ET
BT 34.016 268.957 Td /F1 14.2 Tf [(\(978-0-470-07371-1\) Linear Models by Shayle R. )] TJ ET
BT 34.016 251.558 Td /F1 14.2 Tf [(Searle \(978-0-471-18499-7\))] TJ ET
BT 34.016 234.158 Td /F1 14.2 Tf [(Matrix Algebra Useful for Statistics)] TJ ET
BT 251.784 234.158 Td /F1 14.2 Tf [( Shayle R. Searle )] TJ ET
BT 34.016 216.759 Td /F1 14.2 Tf [(1982-09-02 Basic operations. Special matrices. )] TJ ET
BT 34.016 199.360 Td /F1 14.2 Tf [(Determinants. Inverse matrices. Rank. Canonical )] TJ ET
BT 34.016 181.961 Td /F1 14.2 Tf [(forms. Generalized inverses. Solving linear equations. )] TJ ET
BT 34.016 164.561 Td /F1 14.2 Tf [(Partitioned matrices. Eigenvalues and eigenvectors. )] TJ ET
BT 34.016 147.162 Td /F1 14.2 Tf [(Applications in statistics. The matrix algebra of )] TJ ET
BT 34.016 129.763 Td /F1 14.2 Tf [(regression analysis. An introduction to linear statistical )] TJ ET
BT 34.016 112.364 Td /F1 14.2 Tf [(model.)] TJ ET
BT 36.266 67.469 Td /F1 8.0 Tf [(matrix-algebra-useful-for-statistics-wiley-series-)] TJ ET
BT 36.266 57.701 Td /F1 8.0 Tf [(in-probability-and-statistics)] TJ ET
BT 216.536 67.677 Td /F1 8.0 Tf [(Downloaded from )] TJ ET
BT 281.448 67.469 Td /F1 8.0 Tf [(maykool.com)] TJ ET
BT 328.568 67.677 Td /F1 8.0 Tf [( on September )] TJ ET
BT 319.664 57.909 Td /F1 8.0 Tf [(29, 2022 by guest)] TJ ET
endstream
endobj
89 0 obj
<< /Type /Annot
/Subtype /Link
/A 90 0 R
/Border [0 0 0]
/H /I
/Rect [ 281.4483 66.7294 328.5683 74.8694 ]
>>
endobj
90 0 obj
<< /Type /Action
/S /URI
/URI (https://maykool.com)
>>
endobj
xref
0 91
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000554 00000 n
0000000583 00000 n
0000001030 00000 n
0000001133 00000 n
0000003354 00000 n
0000003461 00000 n
0000003565 00000 n
0000006555 00000 n
0000006660 00000 n
0000009703 00000 n
0000009808 00000 n
0000012726 00000 n
0000012831 00000 n
0000015721 00000 n
0000015826 00000 n
0000018781 00000 n
0000018886 00000 n
0000021795 00000 n
0000021900 00000 n
0000024914 00000 n
0000025019 00000 n
0000027982 00000 n
0000028087 00000 n
0000030975 00000 n
0000031080 00000 n
0000033946 00000 n
0000034051 00000 n
0000036837 00000 n
0000036942 00000 n
0000039850 00000 n
0000039955 00000 n
0000042866 00000 n
0000042971 00000 n
0000045871 00000 n
0000045976 00000 n
0000048894 00000 n
0000048999 00000 n
0000051902 00000 n
0000052007 00000 n
0000055070 00000 n
0000055175 00000 n
0000058106 00000 n
0000058211 00000 n
0000061063 00000 n
0000061168 00000 n
0000064086 00000 n
0000064191 00000 n
0000067098 00000 n
0000067203 00000 n
0000070158 00000 n
0000070263 00000 n
0000073238 00000 n
0000073343 00000 n
0000076216 00000 n
0000076321 00000 n
0000079225 00000 n
0000079330 00000 n
0000082264 00000 n
0000082369 00000 n
0000085316 00000 n
0000085421 00000 n
0000088348 00000 n
0000088453 00000 n
0000091382 00000 n
0000091487 00000 n
0000094358 00000 n
0000094463 00000 n
0000097386 00000 n
0000097491 00000 n
0000100246 00000 n
0000100351 00000 n
0000103292 00000 n
0000103397 00000 n
0000106399 00000 n
0000106504 00000 n
0000109457 00000 n
0000109562 00000 n
0000112514 00000 n
0000112619 00000 n
0000115517 00000 n
0000115622 00000 n
0000118564 00000 n
0000118669 00000 n
0000121533 00000 n
0000121657 00000 n
0000124683 00000 n
0000124809 00000 n
trailer
<<
/Size 91
/Root 1 0 R
/Info 5 0 R
>>
startxref
124880
%%EOF